
Balance de potencia:

Halle los valores de corriente, voltaje y potencia, en cada uno de los elementos del circuito.

Elemento A.

Las variables presentes en el elementó A son corriente y potencial por lo cual se hallará voltaje a partir

$$P_A = V_A I_A$$

Despejando

$$V_A = \frac{P_A}{I_A}$$

$$P_A = -96[W]; I_A = 8[A]$$

$$V_A = \frac{96}{8}$$

$$V_A = 12[V]$$

Elemento F.

Las variables presentes en el elementó F son voltaje y potencial por lo cual se hallará corriente a partir de

$$P_F = V_F I_F$$

Despejando

$$I_F = \frac{P_F}{V_F}$$

Asi

$$P_F = 4[W]; V_F = 2[V]$$

$$I_F = \frac{4}{2}$$

$$I_F = 2[A]$$

Elemento I.

Las variables presentes en el elementó A son corriente y potencial por lo cual se hallará voltaje a partir de

$$P_I = V_I I_I$$

Despejando

$$V_I = \frac{P_I}{I_I}$$

$$P_I = 12[W]; I_I = 2[A]$$

$$V_I = \frac{12}{2}$$

$$V_I = 6[V]$$

Para los hallar los valores de los siguientes elementos haremos uso de ley de tensiones de Kirchhoff y ley de corrientes de Kirchhoff las cuales nos facilitaran la solución de dicho circuito.

Elemento K.

Para hallar la corriente en este elemento se hará uso de la ley de corrientes de Kirchhoff, en el cual se puede hacer relación con los elementos A, E y I.

$$I_K + I_I + I_E - I_A = 0$$

Despejando

$$I_K = I_A - I_I - I_E$$

Asi

$$I_E = 1[A]; I_I = 2[A]; I_A = 8[A]$$

$$I_K = 8 - 2 - 1$$

$$I_K = 5[A]$$

Seguidamente con el nuevo valor hallado de corriente y con el valor de potencia hallaremos voltaje a partir de

$$P_K = V_K I_K$$

Despejando

$$V_K = \frac{P_K}{I_K}$$

$$P_K = 5[W]; I_K = 5[A]$$

$$V_K = \frac{5}{5}$$

$$V_K = 1[V]$$

Elemento J.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos I y K.

$$V_J + V_K - V_I = 0$$

Despejando

$$V_J = V_I - V_K$$

Asi

$$V_I = 6[V]; V_K = 1[V]$$

$$V_J = 6 - 1$$

$$V_J = 5[V]$$

Seguidamente con el nuevo valor hallado de voltaje y con el valor de potencia hallaremos corriente a partir de

$$P_J = V_J I_J$$

Despejando

$$I_J = \frac{P_J}{V_J}$$

Asi

$$P_J = 5[W]; V_J = 5[V]$$

$$I_J = \frac{5}{5}$$

$$I_J = 1[A]$$

Elemento G.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos F, H y J.

$$-V_G + V_F + V_H - V_J = 0$$

Despejando

$$V_G = V_F + V_H - V_J$$

 Asi

$$V_F = 2[V]; V_H = 4[V]; V_J = 5[V]$$

$$V_G = 2 + 4 - 5$$

$$V_G = 1[V]$$

Para hallar la corriente en este elemento se hará uso de la ley de corrientes de Kirchhoff, en el cual se puede hacer relación con los elementos G, J y I.

$$I_G - I_I - I_J = 0$$

Despejando

$$I_G = I_I + I_J$$

Asi

$$I_I = 2[A]; I_J = 1[A]$$

$$I_G = 2 + 1$$

$$I_G = 3[A]$$

Seguidamente con el nuevo valor hallado de corriente y con el valor de voltaje hallaremos potencia partir de

$$P_G = V_G I_G$$

Así

$$V_G = 1[V]; I_G = 3[A]$$

$$P_G = 1 \cdot 3$$

$$P_G = 3[W]$$

Elemento E.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos G y I.

$$-V_E + V_G + V_I = 0$$

Despejando

$$V_E = V_G + V_I$$

Asi

$$V_G = 1[V]; V_I = 6[V]$$

$$V_E = 1 + 6$$

$$V_E = 7[V]$$

Seguidamente con el nuevo valor hallado de voltaje y con el valor de corriente hallaremos potencia partir de

$$P_E = V_E I_E$$

Asi

$$V_E = 7[V]; I_E = 1[A]$$

$$P_E = 7 \cdot 1$$

$$P_E = 7[W]$$

Elemento H.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos J, y K.

$$I_H + I_J - I_K = 0$$

 ${\bf Despejan do}$

$$I_H = I_K - I_J$$

Así

$$I_K = 5[A]; I_J = 1[A]$$

$$I_H = 5 - 1$$

$$I_H = 4[A]$$

Seguidamente con el nuevo valor hallado de corriente y con el valor de voltaje hallaremos potencia partir de

$$P_H = V_H I_H$$

Asi

$$V_H = 4[V]; I_H = 4[A]$$

$$P_H = 4 \cdot 4$$

$$P_H = 16[W]$$

Elemento D.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos F, y H.

$$I_D + I_F - I_H = 0$$

 ${\bf Despejan do}$

$$I_D = I_H - I_F$$

Así

$$I_H = 4[A]; I_F = 2[A]$$

$$I_D = 4 - 2$$

$$I_D = 2[A]$$

Seguidamente con el nuevo valor hallado de corriente y con el valor de potencia hallaremos voltaje partir de

$$P_D = V_D I_D$$

Despejando

$$V_D = \frac{P_D}{I_D}$$

Asi

$$P_D = 6[W]; I_D = 2[A]$$

$$V_D = \frac{6}{2}$$

$$V_D = 3[V]$$

Elemento C.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos D y F.

$$-V_C + V_D - V_F = 0$$

Despejando

$$V_C = V_D - V_F$$

Así

$$V_D = 3[V]; V_F = 2[V]$$

$$V_C = 3 - 2$$

$$V_C = 1[V]$$

Para hallar la corriente en este elemento se hará uso de la ley de corrientes de Kirchhoff, en el cual se puede hacer relación con los elementos B, y D.

$$-I_C - I_D + I_B = 0$$

Despejando

$$I_C = I_B - I_D$$

$$I_B = 8[A]; I_D = 2[A]$$

$$I_C = 8 - 2$$

$$I_C = 6[A]$$

Seguidamente con el nuevo valor hallado de corriente y con el valor de voltaje hallaremos potencia partir de

$$P_C = V_C I_C$$

Así

$$V_C = 1[V]; I_C = 6[A]$$

$$P_C = 1 \cdot 6$$

$$P_C = 6[W]$$

Elemento B.

Para hallar el voltaje en este elemento se hará uso de la ley de tensiones de Kirchhoff, realizando la trayectoria de una malla entre los elementos C, E y A.

$$V_B + V_C + V_E - V_A = 0$$

Despejando

$$V_B = V_A - V_C - V_E$$

Asi

$$V_A = 12[V]; V_C = 1[V]; V_E = 7[V]$$

$$V_B = 12 - 1 - 7$$

$$V_B = 4[V]$$

Seguidamente con el nuevo valor hallado de voltaje y con el valor de corriente hallaremos potencia partir de

$$P_B = V_B I_B$$

Así

$$V_B = 4[V]; I_B = 8[A]$$

$$P_B = 4 \cdot 8$$

$$P_B = 32[W]$$

Tabla general de resultados:

Tabla 1. Tabla d<u>e resultados.</u>

	A	В	С	D	Е	F	G	Н	I	J	K
Voltaje [V]	12	4	1	3	7	2	1	4	6	5	1
Corriente [A]	8	8	6	2	1	2	3	4	2	1	5
Potencia [W]	-96	32	6	6	7	4	3	16	12	5	5

Balance de potencia.

Tabla 2. Resultados de la potencia de los elementos.

	A	В	С	D	E	F	G	Н	I	J	K	Total:
Pasivos		32	6	6	7	4	3	16	12	5	5	96
Activo	-96											-96