Name: $\qquad$ Code: $\qquad$

1. a) compute the o.d.e for $i_{L}$, using symbols instead of numerical values.

Use superposition. (0.5/2.5)
Compute and plot the following equations (you can use the synthetic form):
b) natural responses, $(0.8 / 2.5)$
c) forced responses, (0.7/2.5)
d) complete response. (0.5/2.5)

2. a) Compute an o.d.e for $v_{\text {? }}\left(\mathrm{i}_{\mathrm{f}}\right)$ using symbols instead of numerical values. (0.5/2.5) Compute and plot the following equations:
b) natural responses. (0.8/2.5)
c) forced response. (0.7/2.5)
d) complete response. (0.5/2.5)


3. Bonus 1: How would you mathematically prove that one of your complete answers is correct?
Bones 2: Applie that mathematical proof to one of the exercises.

Name: $\qquad$ Code: $\qquad$
\# = last digit of your code +1 .

1. Compute and plot the natural, forced and complete responses for the voltage in the capacitor, $v_{C}(t)$.
$R=1+\# / 10(\Omega)$
$i_{R}$ is the current through $R$.

2. Using Laplace Transform, compute and plot the zir, zsr and complete response for the voltage in the capacitor, $v_{C}(t)$.

Assume $v_{C}(0)=1 V$.

$t_{0}=(1+\# / 10) \tau(s)$
In addition, show that the answer satisfies the ode.


1. 2.5 2. 2.5
