First Test, Circuits III, August 29, 2023, Danilo Rairán

Name:	Code:
numo.	0000.

1. **a**) compute the o.d.e for i_L , using symbols instead of numerical values. Use superposition. (0.5/2.5) Compute and plot the following equations (you can use the synthetic form): **b**) natural responses, (0.8/2.5) **c**) forced responses, (0.7/2.5)**d**) complete response. (0.5/2.5)

- 2. **a**) Compute an o.d.e for $v_{?}(i_{f})$ using symbols instead of numerical values. (0.5/2.5) Compute and plot the following equations:
 - **b**) natural responses. (0.8/2.5)
 - c) forced response. (0.7/2.5)
 - **d**) complete response. (0.5/2.5)

Bonus 1: How would you mathematically prove that one of your complete answers 3. is correct?

Bones 2: Applie that mathematical proof to one of the exercises.

First Test, Circuits III, March 6, 2023, Danilo Rairán

Name: _____ Code: _____

= last digit of your code + 1.

1. Compute and plot the natural, forced and complete responses for the voltage in the capacitor, $v_c(t)$.

 $R = 1 + \#/10 \ (\Omega)$

 i_R is the current through R.

2. Using Laplace Transform, **compute and plot** the *zir*, *zsr* and complete response for the voltage in the capacitor, $v_c(t)$.

Assume $v_c(0) = 1 V$.

 $t_0 = (1 + \#/10)\tau(s)$

In addition, show that the answer satisfies the **ode**.

1. 2.5 **2**. 2.5