Name:	Code:

- 1. a) Compute a state space model of the following circuit. Consider $v_{c2}(t)$ as the output.
 - **b**) Plot the block diagram.
 - c) Draw an equivalent circuit using Operational Amplifiers (OpAmp)

- 2. a) Compute the transfer function of the following circuit.
 - **b**) Compute the initial conditions, given R = 10 k Ω , C1 = C2 = 10 μ F, $v_r(t) = \mu(-t)$ (V).
 - c) Compute $v_y(t)$ if $v_r(t) = \mu(-t) + 2\mu(t)$ (V).

- **1**. **a**) /0.8
- **2**. **a**) /0.8
- **b**) /0.8

b) /0.9

c) /0.9

c) /0.8

Name: _____Code: ____

1.

- **a**) Compute the transfer function of the following circuit.
- **b)** If $R = 2 \Omega$, $C_1 = 1 F$, $C_2 = 2 F$, $v_r(t) = 2 + 3\mu(t)$, compute the $v_v(t)$.
- **c**) Divide the answer in natural response, forced response, zero input response, zero states response, as equations and plot each of them.

2.

- a) If $x_1(t)=i_L(t)$ and $x_2(t)=v_C(t)$, compute a model in state space for $i_x(t)$ as output.
- **b)** If R=2 Ω , $L=\frac{1}{2}H$, $C=\frac{1}{2}F$, $v_F(t)=u(-t)+3u(t)[V]$, compute $i_\chi(t)$, equation and plot.
- c) separate $i_x(t)$ in natural response, forced \perp \perp \perp response, zero input response, zero states response, present each equation and plot them.
- 1. 2.
- a) 0.8
- b) 0.8
- c) 0.9 c) 0.8