$\qquad$
Name: $\qquad$ Code: $\qquad$

1) Select the polarity of each element in the circuit arbitrarily. If $\mathrm{V}_{\mathrm{C}}=-2 \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}_{\mathrm{E}}=-4 \mathrm{~V}_{\mathrm{H}}=1.5 \# \mathrm{kV}$, compute the given V ? $\forall \mathrm{t}$, using stairs-elevator.

2) Define polarities as you wish, if $\mathrm{V}_{\mathrm{A}}=\# \mathrm{kV}, \mathrm{V}_{\mathrm{B}}=1.3^{*} \# \mathrm{kV}$, $\mathrm{V}_{\mathrm{C}}=-0.6 \mathrm{~V}_{\mathrm{A}}$, a) Build the potential diagram for the circuit $\forall \mathrm{t}$, b) Using that diagram compute $\mathrm{V}_{\mathrm{E}} \forall \mathrm{t}$. c) compute $\mathrm{V}_{\mathrm{s}} \forall \mathrm{t}$.

$$
\text { Vref }=\left\{\begin{array}{c}
a, \text { if } \#=1,2 \\
b, \text { if } \#=3,4 \\
c, \text { if } \#=5,6,7 \\
d, \text { if } \#=8,9,10
\end{array}\right.
$$


3. La carga eléctrica en un conductor se divide en tres partes y se comporta como el número de estudiantes en una universidad. Primero, decrece a razón de $4 k(1+\# / 5)$ por cada año. Luego, por cambios difíciles de explicar, se sabe que si bien el número en cinco años será el mismo de hoy, crecerá $50 \%$ dos años más adelante, cuando será $50 k(1+\# / 5)$. Por último, y de ahí en adelante, el número es invariante.
a. Haga una gráfica para describir el número de estudiantes.
b. Calcule su ecuación.
c. Calcule y grafique el equivalente a la corriente, $i(t)$.

## Nota por punto:

1. 

a. 1.7
2.
a. 0.9
3. a. 0.4
b. 0.4
b. 0.8
c. 0.4
c. 0.4

Third Test, Introduction to Electricity, February 2, 2021, Danilo Rairán, Group: $\qquad$
Name: $\qquad$ Code: $\qquad$
\# = to be assigned at the beginning of the test

1) Define polarities as you wish, if
$\mathrm{V}_{\mathrm{B}}=-1.5 \mathrm{~V}_{\mathrm{C}}=\# \mathrm{kV}=1.5 \mathrm{~V}_{\mathrm{A}}$, and using stairs-elevator analogy compute:
a) $V_{E} \forall t$,
b) $V_{S} \forall t$.

2) Define polarities as you wish, if $\mathrm{V}_{\mathrm{A}}=\# \mathrm{kV}, \mathrm{V}_{\mathrm{B}}=1.5^{*} \# \mathrm{kV}$, $\mathrm{V}_{\mathrm{C}}=0.75 \mathrm{~V}_{\mathrm{A}}$, a) Build the potential diagram for the circuit $\forall \mathrm{t}, \mathrm{b}$ ) Using that diagram compute $\mathrm{V}_{\mathrm{E}} \forall \mathrm{t}$. $\mathbf{c}$ ) compute $\mathrm{V}_{\mathrm{s}} \forall \mathrm{t}$.

$$
\text { Vref }=\left\{\begin{array}{c}
a, \text { if } \#=1,2 \\
b, \text { if\# } \# 3,4 \\
c, \text { if } \#=5,6,7 \\
d, \text { if\# } \# 8,9,10
\end{array}\right.
$$


3) The counting of electric charge passing through an element in a circuit decreases $0,7 \mu \mathrm{C} / \mathrm{ms}$ until the time equals \# ms when the counting was $5,4 \mu \mathrm{C}$, then it remains constant for 3 ms and suddenly starts to increase, so that it is $12,4 \mu \mathrm{C} \#$ ms later. a) make a model to describe the counting of electric charge; $\mathbf{b}$ ) predict the counting at $\mathrm{t}=2 \# \mathrm{~ms}, \mathbf{c}$ ) when is the counting lower than 6,3 $\mu \mathrm{C}$ ?

| 1) a | $/ 0,8$ | 2) a | $/ 1,0$ | 3) a | $/ 0,8$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| b | $/ 0,8$ | b | $/ 0,4$ | b | $/ 0,4$ |
|  |  | c | $/ 0.4$ | c | $/ 0,4$ |

Third Test, Introduction to Electricity, March 10, 2020, Danilo Rairán, Group: $\qquad$
Name: $\qquad$ Code: $\qquad$
\# = last digit of your code plus one

1) Half million cats were devastating the mice population. Nobody knew what was happening until the authorities decided to hire you to make a model. They knew that a year ago there were \# billion mice, and just two months ago there were \#/3 billions. Everything changes today because the government decided to call a flautist to take all the cats to another country. If you can predict that the mice population will increase to \#/4 billions in two months and that they will recover their initial population in six months, a) make a model to describe the mice population from Mar/10/2019 to Mar/10/2021; b) predict the mice population at May/10/2020, c) when is the number of mice lower than \#/2 billions? d) could an electric current or electric charge behaves like this mice population? Why?
2) if $\mathrm{V}_{\mathrm{B}}=-1.25 \mathrm{~V}_{\mathrm{C}}=\# \mathrm{kV}=2.5 \mathrm{~V}_{\mathrm{E}}$, and using stairs-elevator analogy compute: a) $V_{D}$ $\forall \mathrm{t}, \mathrm{b}) \mathrm{V}_{\mathrm{da}} \forall \mathrm{t}$.

3) if $\mathrm{V}_{\mathrm{F}}=\# \mathrm{kV}, \mathrm{V}_{\mathrm{D}}=1.5^{*} \# \mathrm{kV}, \mathrm{V}_{\mathrm{B}}=0.75 \mathrm{~V}_{\mathrm{F}}$, a) Build the potential diagram for the circuit, b) Using that diagram compute $\mathrm{V}_{\mathrm{db}}$. c) $\mathrm{V}_{\mathrm{E}}$.

$$
\text { Vref }=\left\{\begin{array}{c}
a, \text { if } \#=1 \\
b, \text { if } \#=2,3,4 \\
c, \text { if } \#=5,6,7 \\
d, \text { if } \#=8,9,10
\end{array}\right.
$$



1) a /0,5
2) a /0,9
b $\quad / 0,4$
b $\quad / 0,9$
b $/ 0,5$
c $\quad / 0,4$
c $\quad / 0,5$
d $\quad / 0$
$\qquad$
Name: $\qquad$ Code: $\qquad$
\# = to be assigned at the beginning of the test
3) Define polarities as you wish, if $V_{B}=-$ $1.5 \mathrm{~V}_{\mathrm{C}}=\# \mathrm{kV}=1.5 \mathrm{~V}_{\mathrm{A}}$, and using stairselevator analogy compute: a) $\mathrm{V}_{\mathrm{E}} \forall \mathrm{t}, \mathrm{b}$ ) compute also $\mathrm{V}_{\mathrm{ab}} \forall \mathrm{t}$.

4) Define polarities as you wish, if $\mathrm{V}_{\mathrm{E}}=\# \mathrm{kV}, \mathrm{V}_{\mathrm{D}}=1.5^{*} \#$ $\mathrm{kV}, \mathrm{V}_{\mathrm{B}}=0.75 \mathrm{~V}_{\mathrm{E}}$, a) Build the potential diagram for the circuit $\forall \mathrm{t}, \mathrm{b}$ ) Using that diagram compute $\mathrm{V}_{\mathrm{ab}}$ for $t<t_{0}$. c) compute also $V_{s}$ for $t>t_{0}$.

$$
\text { Vref }=\left\{\begin{array}{c}
a, \text { if } \#=1,2 \\
b, \text { if } \#=3,4 \\
c, \text { if } \#=5,6,7 \\
d, \text { if } \#=8,9,10
\end{array}\right.
$$


3) Half million cats were devastating the mice population. Nobody knew what was happening until the authorities decided to hire you to make a model. They knew that a year ago there were \# billion mice, and just two months ago there were \#/3 billions. Everything changes today because the government decided to call a flautist to take all the cats to another country. If you can predict that the mice population will increase to \#/4 billions in two months and that they will recover their initial population in six months, a) make a model to describe the mice population from Jul/21/2019 to Jul/21/2021; b) predict the mice population at Aug/21/2020, c) when is the number of mice lower than \#/2 billions? d) could an electric current or electric charge behave like this mice population? Why?

| 1) a | $/ 0,9$ | 2) a | $/ 0,9$ | 3) a | $/ 0,5$ |
| ---: | ---: | ---: | ---: | ---: | :--- |
| b | $/ 0,9$ | b | $/ 0,5$ | b | $/ 0,4$ |
|  |  | c | $/ 0,5$ | c | $/ 0,4$ |
|  |  |  | d | $/ 0$ |  |

Third Test. Introduction to Technology in Electricity. Code: $\qquad$ Group: $\qquad$

## Danilo Rairán, May/22/2018

Note: \# is equal to the last digit of your code plus one.
The points in each item will be assigned if and only if the answer and the process are perfect.

1. Given an electrical element: $\xrightarrow{+}$, where $i(t)=\# \frac{d v(t)}{d t}$ compute the equation and plot the graph in each case, as follows:
a. $q(t)(0.6$ points)
b. $v(t)(0.6$ points $)$
c. $p(t)(0.6$ points)

2. Compute the current that passes through the voltage source. (1.7 points)

3. Given the power consumption in a factory as shown in the graph, answer each question.
a. Energy consumption for machine $B$ in a day. ( 0.5 points)
b. Total energy cost per month if $1 \mathrm{kWh}=\$ 600$. ( 0.5 points)
c. if $v=110 \mathrm{~V}$, plot $i(t)$ in the machine A for a day. (0.5 points)

$\qquad$

Name: $\qquad$ Code: $\qquad$

1) If $1.1 \mathrm{~V}_{\mathrm{A}}=-2.3 \mathrm{~V}_{\mathrm{B}}=3.4 \mathrm{~V}_{\mathrm{C}}=\# \mathrm{kV}$, compute the voltage in all the elements of variable voltage, $\forall \mathrm{t}$, using stairs-elevator analogy. Polarities will be assigned by the professor during the test.

2) If $\mathrm{V}_{\mathrm{C}}=-3 \mathrm{~V}_{\mathrm{B}}=2 \mathrm{~V}_{\mathrm{F}}=\# \mathrm{kV}$, a) plot the potential diagram for the circuit $\forall \mathrm{t}$. b) Using the potential diagram compute $\mathrm{V}_{\text {be }}$. Polarities and reference node will be assigned by the professor during the test.

3) The measure of the electric charge passing through a wire changes from $5.4 \# \mu \mathrm{C}$ to $12.4 \# \mu \mathrm{C}$ to $6.3 \#$ $\mu \mathrm{C}$, at \# ms, $2 \# \mathrm{~ms}, 3 \# \mathrm{~ms}$, respectively. Then it decreases at $3.5 \# \mu \mathrm{C} / \mathrm{ms}$. a) make a model to describe the counting of electric charge; $b$ ) predict the counting at $t=1.5 \# \mathrm{~ms}, \mathrm{c}$ ) when is the counting lower than $5 \# \mu \mathrm{C}$ ? d) Compute and plot the electric current.
4) $/ 1.6$
5) $/ 1.3$
6) $/ 0.8$
/0.4
/0.2
/0.3
/0.4
$\qquad$ Name: $\qquad$ Code: $\qquad$
7) Select the polarity of each element in the circuit arbitrarily. If $V_{C}=-2 V_{D}=3 V_{E}=-4 V_{H}=\# k V$, compute the given $V$ ? $\forall t$, using the given method. If you need a reference node, use the node given to you.

8) Select the polarity of each element in the circuit arbitrarily. If $V_{A}=-2 V_{B}=3 V_{C}=\# k V$, compute the given $V$ ? $\forall t$, using the given method. If you need a reference node, use the node given to you.

\# =
Methods: Stairs-Elevator or Potential diagram Question: 1) Vab $\forall t$ or Vad $\forall t, 2)$ Veb $\forall t$ or Vde $\forall t$ Vref = all possible nodes
9) $/ 2.5$
10) $/ 2.5$
