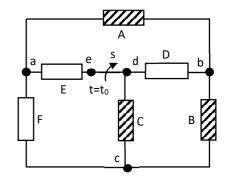

Third Test, Introduction to Electrical Technology, November 28, 2022, Danilo Rairan, Group: _____

_____ Code: _____


Name: ____

1) Select the polarity of each element in the circuit arbitrarily. If $V_c = -2V_D = 3V_E = -4V_H = 1.5\#$ kV, compute the given $V_? \forall t$, using stairs-elevator.

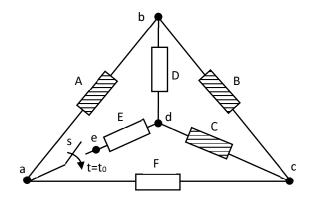
2) Define polarities as you wish, if V_A = # kV, V_B = 1.3*# kV, V_C = -0.6V_A, a) Build the potential diagram for the circuit ∀t, b) Using that diagram compute V_E ∀t. c) compute V_s ∀t.

$$Vref = \begin{cases} a, if \# = 1,2 \\ b, if \# = 3,4 \\ c, if \# = 5,6,7 \\ d, if \# = 8,9,10 \end{cases}$$

- **3.** La carga eléctrica en un conductor se divide en tres partes y se comporta como el número de estudiantes en una universidad. Primero, decrece a razón de 4k(1 + #/5) por cada año. Luego, por cambios difíciles de explicar, se sabe que si bien el número en cinco años será el mismo de hoy, crecerá 50% dos años más adelante, cuando será 50k(1 + #/5). Por último, y de ahí en adelante, el número es invariante.
 - a. Haga una gráfica para describir el número de estudiantes.
 - **b.** Calcule su ecuación.
 - **c.** Calcule y grafique el equivalente a la corriente, i(t).

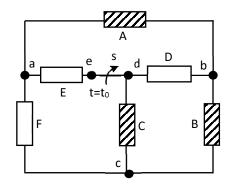
Nota µ	por punt	o:
--------	----------	----

1.	a . 1.7	2.	a . 0.9	3.	a . 0.4
			b . 0.4		b . 0.8
			c . 0.4		c . 0.4


Third Test, Introduction to Electricity, February 2, 2021, Danilo Rairán, Group: _____

Name: ____

Code:


= to be assigned at the beginning of the test

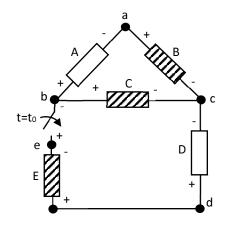
- 1) Define polarities as you wish, if
- $V_B = -1.5V_C = \# kV = 1.5V_A$, and using stairs-elevator analogy compute: a) $V_E \forall t$, b) $V_S \forall t$.

Define polarities as you wish, if V_A = # kV, V_B = 1.5*# kV, V_C = 0.75V_A, a) Build the potential diagram for the circuit ∀t, b) Using that diagram compute V_E ∀t. c) compute V_s ∀t.

$$Vref = \begin{cases} a, if \# = 1,2 \\ b, if \# = 3,4 \\ c, if \# = 5,6,7 \\ d, if \# = 8,9,10 \end{cases}$$

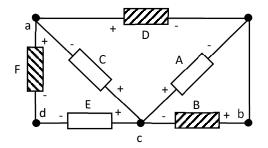
3) The counting of electric charge passing through an element in a circuit decreases 0,7 μ C/ms until the time equals # ms when the counting was 5,4 μ C, then it remains constant for 3 ms and suddenly starts to increase, so that it is 12,4 μ C # ms later. **a**) make a model to describe the counting of electric charge; **b**) predict the counting at t = 2# ms, **c**) when is the counting lower than 6,3 μ C?

1) a	/0,8	2) a	/1,0	3) a	/0,8
b	/0,8	b	/0,4	b	/0,4
		С	/0.4	С	/0,4


Third Test, Introduction to Electricity, March 10, 2020, Danilo Rairán, Group:

Name: _

_____ Code: _____


= last digit of your code plus one

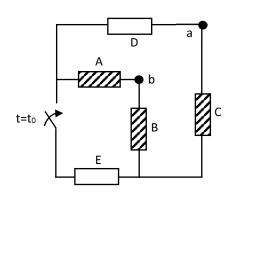
- 1) Half million cats were devastating the mice population. Nobody knew what was happening until the authorities decided to hire you to make a model. They knew that a year ago there were # billion mice, and just two months ago there were #/3 billions. Everything changes today because the government decided to call a flautist to take all the cats to another country. If you can predict that the mice population will increase to #/4 billions in two months and that they will recover their initial population in six months, a) make a model to describe the mice population from Mar/10/2019 to Mar/10/2021; b) predict the mice population at May/10/2020, c) when is the number of mice lower than #/2 billions? d) could an electric current or electric charge behaves like this mice population? Why?
- 2) if V_B = -1.25V_C = # kV = 2.5V_E, and using stairs-elevator analogy compute: a) V_D ∀t, b) V_{da} ∀t.

3) if $V_F = \# kV$, $V_D = 1.5^* \# kV$, $V_B = 0.75V_F$, **a**) Build the **potential diagram** for the circuit, **b**) Using that diagram compute V_{db} . **c**) V_E .

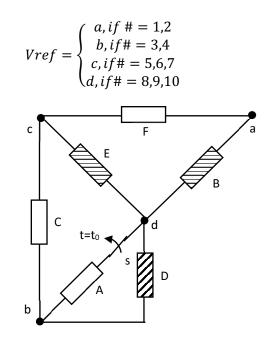
$$Vref = \begin{cases} a, if \ \# = 1 \\ b, if \ \# = 2,3,4 \\ c, if \ \# = 5,6,7 \\ d, if \ \# = 8,9,10 \end{cases}$$

1) a	/0,5	2) a	/0,9	3) a	/0,9
b	/0,4	b	/0,9	b	/0,5
С	/0,4			C	/0,5

d /0


Third Test, Introduction to Electricity, July 21, 2020, Danilo Rairán, Group:

Name:

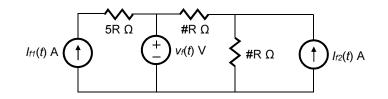

_____ Code: _____

= to be assigned at the beginning of the test

1) Define polarities as you wish, if $V_B = -1.5V_C = \# kV = 1.5V_A$, and **using stairs-elevator** analogy compute: **a**) $V_E \forall t$, **b**) compute also $V_{ab} \forall t$.

2) Define polarities as you wish, if V_E = # kV, V_D = 1.5*# kV, V_B = 0.75V_E, a) Build the potential diagram for the circuit ∀t, b) Using that diagram compute V_{ab} for t<t₀. c) compute also V_s for t>t₀.

3) Half million cats were devastating the mice population. Nobody knew what was happening until the authorities decided to hire you to make a model. They knew that a year ago there were # billion mice, and just two months ago there were #/3 billions. Everything changes today because the government decided to call a flautist to take all the cats to another country. If you can predict that the mice population will increase to #/4 billions in two months and that they will recover their initial population in six months, a) make a model to describe the mice population from Jul/21/2019 to Jul/21/2021; b) predict the mice population at Aug/21/2020, c) when is the number of mice lower than #/2 billions? d) could an electric current or electric charge behave like this mice population? Why?

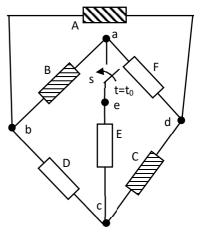

1) a	/0,9	2) a	/0,9	3) a	/0,5
b	/0,9	b	/0,5	b	/0,4
		С	/0,5	С	/0,4
				d	/0

Third Test. Introduction to Technology in Electricity. Code: ______ Group: _____ Danilo Rairán, May/22/2018

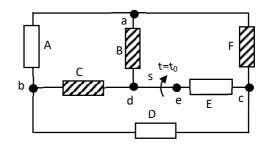
Note: # is equal to the last digit of your code plus one.

The points in each item will be assigned **if and only if** the answer and the process are perfect.

- 1. Given an electrical element: +, where $i(t) = \# \frac{dv(t)}{dt}$ compute the equation and plot the graph in each case, as follows: a. q(t) (0.6 points) b. v(t) (0.6 points) c. p(t) (0.6 points) d. v(t) (0.6 points)
- 2. Compute the current that passes through the voltage source. (1.7 points)

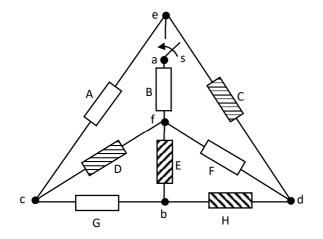

- **3**. Given the power consumption in a factory as shown in the graph, answer each question.
 - a. Energy consumption for machine B in a day. (0.5 points)
 - b. Total energy cost per month if 1 kWh = \$ 600. (0.5 *points*)
 - c. if v = 110 V, plot i(t) in the machine A for a day. (0.5 points)

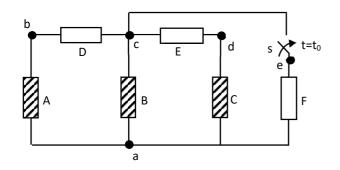
#900 W			С			1
#800 W #700 W					С	
#600 W	-		В	C		
#500 W		L				
		В		В	В	
#300 W						
#200 W						·
		А	A	А	A	
	0	h 6	5 h í	12 h 1	18 h 2	24 h


Third Test, Introduction to Electrical Technology, February 24, 2022, Danilo Rairan, Group:

Name: _____ Code: _____

1) If $1.1V_A = -2.3V_B = 3.4V_C = \#$ kV, compute the voltage in all the elements of variable voltage, ∀t, using stairs-elevator analogy. Polarities will be assigned by the professor during the test.


2) If $V_C = -3V_B = 2V_F = \# kV$, a) plot the potential diagram for the circuit $\forall t. b$) Using the potential diagram compute V_{be}. Polarities and reference node will be assigned by the professor during the test.


3) The measure of the electric charge passing through a wire changes from 5.4# μ C to 12.4# μ C to 6.3# μ C, at # ms, 2# ms, 3# ms, respectively. Then it decreases at 3.5# μ C/ms. **a**) make a model to describe the counting of electric charge; **b**) predict the counting at t = 1.5 # ms, **c**) when is the counting lower than 5# μ C? **d**) Compute and plot the electric current.

1) /1.6	2) /1.3	3)	/0.8
	/0.4		/0.2
			/0.3
			/0.4

1) Select the polarity of each element in the circuit arbitrarily. If $V_c = -2V_D = 3V_E = -4V_H = \# kV$, compute the given $V_2 \forall t$, using the given method. If you need a reference node, use the node given to you.

2) Select the polarity of each element in the circuit arbitrarily. If $V_A = -2V_B = 3V_C = \# kV$, compute the given V₂ \forall t, using the given method. If you need a reference node, use the node given to you.

=

Methods: Stairs-Elevator or Potential diagram Question: 1) Vab $\forall t$ or Vad $\forall t$, 2) Veb $\forall t$ or Vde $\forall t$ Vref = all possible nodes

1) /2.5 2) /2.5